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Abstract
The Bayesian Approach and the Classical Approach are two 
very different families of approaches to statistical inference. 
There are many different versions of each view, often with 
very substantial differences among them. But I will here 
endeavor to explain the philosophical core of each family 
of approaches, as well as to identify four main philosophical 
differences between them.
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1 | THE BAYESIAN APPROACH

On the Bayesian Approach to inference, the rational agent begins with a prior credence distribution over a set of 
“basic” hypotheses, which obeys the axioms of the probability calculus. 1 When the agent collects new evidence that 
involves learning (exactly) the proposition A E , they update their prior credence distribution according to the Bayesian 
Rule of Conditionalization. According to the Rule of Conditionalization, when the agent learns A E , their new credence 
in an arbitrary hypothesis A H should be identical to the ratio of their old credence in the conjunction A H∧E to their old 

credence in A E alone. This ratio of A p(H∧E ) to A p(E) is commonly abbreviated “A p(H|E) .”
One way of thinking about the Rule of Conditionalization is that, when the agent learns (exactly) A E , they thereby 

“narrow down” which world is the actual world to one of the A E-worlds, and thus “rule out” all of the A ¬E-worlds. But 
since learning that A E is true does not distinguish among any of the A E-worlds, the agent has no reason to alter the 
ratio of credences that they assign to any two sets of A E-worlds. In particular, the agent has no reason to change their 
credence ratio between the A H∧E-worlds and the set of all A E-worlds (or, equivalently, between the A H∧E-worlds and 
the A ¬H∧E-worlds). So, for example, if the credence that the agent initially assigns to the A H∧E-worlds constitutes 
70% of the total credence that they initially assign to all of the A E-worlds, then that ratio should remain unchanged 
when the agent learns that A E is true. But since the agent's credence in A E after learning A E is 1, the result is that the 

agent's new credence in A H∧E , and hence in A H , should just be 0.70. In other words: the agent's new A p(H) , after learning 

A E , should be their old A
p(H∧E)

p(E)
 (i.e, their old A p(H|E) ), just as required by the Rule of Conditionalization. 2

On an only slightly different way of thinking about the Rule of Conditionalization, upon learning A E , the agent's 
prior credence distribution is “renormalized” in proportion both to the prior credence A p (Hi) of each hypothesis and to 
the likelihood A p (E|Hi) that each hypothesis assigns to A E , as follows: For any hypothesis that assigns a likelihood of 0 
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to A E , that hypothesis is assigned a credence of 0 in the agent's posterior credence distribution, regardless of its prior 
credence; since the hypothesis assigns a likelihood of 0 to an event that actually occurred, the agent permanently 
rules that hypothesis out from further consideration. If two hypotheses A A and A B both assign the same likelihood to A E 

(i.e., if A p(E|A) = p(E|B) ), then the ratio between the agent's credences in A A and A B in their prior credence distribution (i.e, 

their A
p(A)

p(B)
 ) will be unchanged in the posterior credence distribution. Similarly, if A A assigns a likelihood to A E that is twice 

is high as the likelihood that A B assigns to A E (i.e., if A p(E|A) = 2∗p(E|B) ), then the ratio between the agent's credences in A A 
and A B in the posterior credence distribution will be twice as high as it was in their prior credence distribution. And so 
on. Together with the constraint that the agent's credences must always obey the axioms of the probability calculus, 
the agent's posterior credence distribution is uniquely determined. 3

For example, suppose that the agent's credences are defined over (an algebra of) three mutually exclusive and 
jointly exhaustive hypotheses: A H

1
 , A H

2
 , and A H

3
 . Further suppose that the ratio of the agent's credences in those hypoth-

eses in their prior credence distribution is 1:2:3, so that their A p (H1) =
1

6
 , A p (H2) =

1

3
 , and A p (H3) =

1

2
 . Finally, suppose that 

the likelihoods that each hypothesis assigns to A E are as follows: A p (E|H1) = 0 , A p (E|H2) =
1

2
 , and A p (E|H3) =

1

4
 . When the 

agent learns exactly A E , A H
1
 is thereby ruled out, since it assigned a likelihood of 0 to A E ; the agent's posterior credence 

in A H
1
 is therefore 0. The ratio between the agent's credences in A H

2
 and A H

3
 in their prior credence distribution was 2:3. 

Since the likelihood that A H
2
 assigns to A E is twice as high as the likelihood that A H

3
 assigns to A E 

(
1

2
 vs. 1

4

)
 , that ratio must 

increase by a factor of 2, from 2:3 to 4:3, in the agent's posterior credence distribution. Since the agent's credences 
in A H

1
 , A H

2
 , and A H

3
 must continue to sum to 1 in the agent's posterior credence distribution, the agent's posterior 

credence in A H
2
 is A

4

7
 , and their posterior credence in A H

3
 is A

3

7
 .

2 | THE CLASSICAL APPROACH

Here, I will focus on Fisherian significance tests, though in many cases analogous points apply to, e.g., Neyman-Pearson 
tests, as well as to other “classical” statistical methods. 4

The general strategy of a Fisherian significance test is as follows:

1.  Choose a hypothesis A H
0
 , referred to as the Null Hypothesis, which you are going to investigate whether your 

experiment gives you good grounds to reject.
2.  Figure out the possible outcomes of the experiment, and assign a likelihood to each outcome on the assumption 

that A H
0
 is true.

3.  Once you obtain the actual outcome, calculate the likelihood (on the assumption of A H
0
 ) that that outcome or an 

outcome at least as unlikely would occur, by summing the likelihoods (on A H
0
 ) of each outcome that is at least as 

unlikely as the actual outcome (including the actual outcome itself).
4.  Use this sum (called a p-value) as a guide to the rejection of A H

0
 . In other words, if the p-value A < α , then your results 

are statistically significant at level A α and you may reject A H
0
 at that significance level. The lower the value of A α is, 

the “stronger” the rejection of A H
0
 is.

The intuitive thought here is that when a particular Null Hypothesis entails that it was very unlikely that an 
outcome at least as “extreme” as the actual outcome would occur, the actual outcome constitutes reason to reject 
that Null Hypothesis. And, the less likely that an outcome at least as extreme as the actual outcome is, according to 
the Null Hypothesis (i.e., the lower the p-value of the experiment), the stronger grounds we have to reject that Null 
Hypothesis. By contrast, if a Null Hypothesis entails that it was fairly likely that an outcome as least as extreme as 
the actual outcome would occur (i.e., if the p-value of the experiment is relatively high), then we have comparatively 
weak reason to reject the Null Hypothesis.
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“Rejection” of a Null Hypothesis is a central but often misunderstood attitude in the Classical paradigm. 5 Rejec-
tion of a Null Hypothesis at the 0.05 level, for example, definitely does not correspond to a credence of 0.95 that 
the Null Hypothesis is false. 6 The standard account here is that rejection of the Null Hypothesis at the 0.05 level 
corresponds only to being committed to the view that, if the Null Hypothesis is true, the probability is less that 5% 
that an outcome at least as extreme as the actual outcome would occur. The standard story typically continues with 
the thought that, if we were to act as though the Null Hypothesis is false in exactly those situations in which A p< 0.05 , 
we would commit a Type I Error (i.e., the error of rejecting the Null Hypothesis when it is actually true) in less than 5% 
of the situations in which the Null Hypothesis is true. 7

Suppose, for instance, that we are trying to assess whether a particular coin is fair—i.e., whether its probabil-
ity of landing heads is A

1

2
 . So, we define our Null Hypothesis, A H

0
 , to be the hypothesis that the coin is fair, and we 

endeavor to determine whether our experiment gives us sufficient grounds to reject that hypothesis at a particular 
level of A α . Suppose that we design our experiment to involve flipping the coin 20 times under particular condi-
tions and recording the total number of heads and tails outcomes. Next, we must think about what the possible 
outcomes of the experiment are. Since we are recording the total number of heads and tails flips, there are 21 possi-
ble outcomes: {0 heads and 20 tails, 1 heads and 19 tails, 2 heads and 18 tails, …, 20 heads and 0 tails}. It is straight-
forward to calculate the likelihood of each of these outcomes, on the assumption that A H

0
 is true. For the 0-heads 

outcome, the likelihood is simply A

(

1

2

)

20

 , since the only way for that outcome to occur is for the coin to land tails 20 
times in a row; on the assumption of A H

0
 , the probability of each such tails flip is (independently) A

1

2
 . For the 1-heads 

outcome, the total likelihood is the likelihood (on the assumption of A H
0
 ) of any one particular 1-heads outcome—say, 

TTTTTTTTTTHTTTTTTTTT—multiplied by the number of (equiprobable) 1-heads outcomes—here, 20, since the one 
heads flip could occur on any of the 20 flips. More generally, on the assumption of A H

0
 , the likelihood that we will 

observe some A r-heads outcome or other is: A

(

1

2

)

20

20!

r!(20−r)!
 . The approximate values of this likelihood for all 21 values 

of A r are given in the Table 1 below.
Suppose that we observe an actual outcome of TTTHTHTTTHTTTTTHHTTH, which contains 6 heads and 14 

tails. The likelihood, on the assumption of A H
0
 , of a 6-heads outcome is approximately 0.037. Accordingly, we then 

look to find all of the outcomes that are at least as “extreme” as the actual outcome—i.e., those outcomes which have 
likelihoods, on the assumption of A H

0
 , of 0.037 or lower. There are 14 such outcomes: A r = 0 , A r = 1 , A r = 2 , A r = 3 , A r = 4 , 

A r = 5 , A r = 6 , A r = 14 , A r = 15 , A r = 16 , A r = 17 , A r = 18 , A r = 19 , and A r = 20 . (Note again that, since we are looking for outcomes 
at least as extreme as the actual outcome, we count the actual outcome as well.) Summing the likelihoods for these 
outcomes, we obtain a p-value of (approximately) 0.000 + 0.000 + 0.000 + 0.001 + 0.005 + 0.015 + 0.037 + 0.037 
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A r   A p(r headsA |H
0
) A r   A p(r headsA |H

0
)

0 0.000 11 0.160

1 0.000 12 0.120

2 0.000 13 0.074

3 0.001 14 0.037

4 0.005 15 0.015

5 0.015 16 0.005

6 0.037 17 0.001

7 0.074 18 0.000

8 0.120 19 0.000

9 0.160 20 0.000

10 0.176

T A B L E  1   The approximate likelihoods of r heads in 20 flips, on the assumption that the coin is fair



+ 0.015 + 0.005 + 0.001 + 0.000 + 0.000 + 0.000 = 0.116. Since the p-value of this experiment is (approximately) 
0.116, the Null Hypothesis that the coin is fair can be rejected at all and only the significance levels greater than or 
equal to 0.116; thus, A H

0
 could not be rejected at the 0.01, 0.05, or 0.10 levels. If the actual outcome had instead 

contained 4 heads A (r = 4) (for instance, if it had been TTTHTTTTTHTTTTTTHTTH), then the p-value of the experi-
ment would have been (approximately) 0.000 + 0.000 + 0.000 + 0.001 + 0.005 + 0.005 + 0.001 + 0.000 + 0.000 +  
0.000 = 0.012. In that case, A H

0
 could have been rejected at the 0.05 (or any A α > 0.012 ) level, but not at the 0.01 level 

(since A 0.012> 0.01 ).

3 | ACTUAL AND NON-ACTUAL LIKELIHOODS

The first of the main philosophical differences between the Bayesian and the Classical approaches to statistical 
inference is that Bayesians think that only the likelihoods of the actual outcome on various hypotheses matter infer-
entially, whereas Classicalists think that the likelihoods of various non-actual outcomes can matter too, even once the 
likelihoods of the actual outcome are fixed.

In the Bayesian analysis from §2 above, note that the focus was exclusively on the likelihood of the actually 
observed evidence, A E , on the various hypotheses under consideration (A H

1
 , A H

2
 , and A H

3
 ). On the Bayesian approach, 

when the agent learns precisely A E , the likelihoods of propositions other than A E are irrelevant; all that matters is 
the likelihood of A E itself, on the various hypotheses over which the agent's credence is defined. When a particular 
hypothesis assigns a likelihood to A E of 0, that hypothesis is ruled out and forever relegated to zero-credence status, 
regardless of what likelihood the hypothesis assigns to other propositions. Similarly, insofar as a particular hypothesis 
assigns a higher likelihood to A E than its competitors do, it gets a proportionally larger credence “boost” than do its 
competitors, regardless of what likelihoods any of the hypotheses under consideration assigns to propositions other 
than A E . At no point in this process is any consideration given to the values of the likelihoods that the various hypoth-
eses under consideration assigned to any outcome that did not actually occur, or to any proposition that describes the 
experiment's outcome in weaker terms. 8

By contrast, on the Classical Approach, the likelihoods of non-actual outcomes can matter too, even once the 
likelihoods of the actual outcome are fixed. For example, consider two cases in which the likelihood of the actual 
outcome on the supposition of the Null Hypothesis is 0.01. In Case 1, there are no other possible outcomes with such 
a low likelihood on the supposition of the Null Hypothesis; in this case, the likelihood of each other possible outcome, 
on the supposition of the Null Hypothesis, is 0.05. In Case 2, suppose that there are 20 other possible outcomes 
that have the same likelihood, on the supposition of the Null Hypothesis, as the actual outcome does—i.e., 0.01. 
Thus, although the likelihood of the actual outcome, on the supposition of the Null Hypothesis, is identically 0.01 
in both cases, the likelihoods of the various non-actual outcomes in the two cases differ; in Case 1, the non-actual 
outcomes all have higher likelihoods than the actual outcome does, whereas in Case 2, there are several non-actual 
outcomes that have the same likelihood as the actual outcome. As a result of that difference, the p-values that we 
calculate in Case 1 and Case 2 will be different. In Case 1, since there are no other possible outcomes with as low a 
likelihood, on the supposition of the Null Hypothesis, as the actual outcome, the p-value will just be the likelihood of 
the actual outcome itself—i.e., 0.01. In Case 2, since there are 20 other possible outcomes that have at least as low 
a likelihood, on the supposition of the Null Hypothesis, as the actual outcome, the p-value will be the sum of all of 
those likelihoods—i.e., 0.21. This difference in p-values is large and consequential; a p-value of 0.01 corresponds to 
a statistically significant rejection of the Null Hypothesis in many contexts, whereas a p-value of 0.21 is almost never 
statistically significant.

One consequence for the Classical Approach of the relevance of non-actual likelihoods is that the statistical 
significance of a particular actual outcome can depend on the “stopping rule” that was used when the outcome 
was observed. 9 Suppose, for instance, that Anne and Bob decide that they are going to flip a coin several times in 
order to determine whether they can reject the Null Hypothesis that the coin is fair. However, they have divergent 
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plans for how to collect the relevant evidence; Anne's plan is to flip the coin 20 times, whereas Bob's plan is to flip 
the coin until it has landed heads 6 times. Notwithstanding their different plans, they begin flipping the same coin 
together, each planning to stop when their individual stopping condition is satisfied and to perform their own Clas-
sical statistical analysis. But, imagine that, as things happen to turn out, the coin lands heads for the 6th time on the 
20th flip, at which point both Anne and Bob stop flipping, since each of their separate stopping conditions has been 
simultaneously met. For the sake of concreteness, suppose that the outcome is the same as the one described in §3: 
TTTHTHTTTHTTTTTHHTTH.

As a result of their different stopping rules, Anne and Bob will calculate different p-values. Since Anne was going 
to flip the coin 20 times regardless of the results of each flip, the possible outcomes for her include all and only the 
20-flip outcomes; by contrast, since Bob was going to flip the coin until it landed heads for the 6th time, the possible 
outcomes for him include all and only the 6-heads outcomes. So, for example, a 20-heads-0-tails outcome was possi-
ble for Anne, whereas it was not for Bob; similarly, a 6-heads-0-tails outcome was possible for Bob, but not for Anne. 
(Of course, the actual outcome of TTTHTHTTTHTTTTTHHTTH is in the set of outcomes that are possible for both 
of them.) Thus, when Anne and Bob calculate the total likelihood, on the supposition of the Null Hypothesis, that 
an outcome at least as unlikely as the actual outcome would occur, they will be looking to distinct (though partially 
overlapping) sets of possible outcomes. And so it is possible for them to calculate different p-values. In this case, 
whereas Anne will calculate a p-value of approximately 0.116 (as before), Bob will calculate a p-value of approxi-
mately 0.032. 10 Thus, Bob can reject the Null Hypothesis that the coin is fair at, for instance, the A α = 0.05 level (since 

A 0.032< 0.05 ), whereas Anne cannot (since A 0.116> 0.05 ).
By contrast, on the Bayesian approach, since the actual observed outcome was the same for both Anne and Bob, 

their inferential processes will be identical as long as their prior probabilities in the relevant hypotheses were the 
same. 11 Once the priors are fixed, all that matters is the likelihood of the actual outcome on the various hypotheses 
under consideration; likelihoods of non-actual outcomes on the various hypotheses under consideration are irrele-
vant. Since the likelihoods of the actual outcome on the various hypotheses under consideration is not (typically) 
impacted by the choice of stopping rule, differences in stopping rules are not the source of an inferential difference 
on the Bayesian approach. 12

Different intuitions can be marshaled to support each side of this particular dispute about stopping rules. On 
the Bayesian side, there is a fairly clear intuitive sense in which Anne and Bob have made the “same observation” or 
collected the “same data” in the case above, and moreover there is a natural intuition that two individuals who are in 
the same initial epistemic state and who make the same observation should reach identical conclusions. In addition, 
there is some intuitive force to the thought that the “data” on which we base scientific conclusions is public and 
shareable, and that it does not depend on the private psychological plans of the individuals who collect that data. For 
instance, it is plausible to think that anyone who has access to an accurate record of the coin flipping (e.g., a video or a 
laboratory notebook) would be well-situated to evaluate the epistemic force of the results, without having to engage 
with questions about the identity of the coin-flipper or the counterfactual circumstances under which that person 
would have stopped the experiment (say, through conducting interviews with that person's friends and colleagues).

On the Classical side, however, there is the competing thought that Anne and Bob did not actually observe the 
same thing: Anne observed a six-heads outcome relative to a stopping rule that terminated on the 20th flip, whereas 
Bob observed a 6-heads outcome relative to a stopping rule that terminated on the 6th heads result. Relatedly, there is 
an intuition that experimental design matters, even once we fix the results of the experiment. One hesitation about 
so-called “optional stopping rules,” for example, is that they permit a scientific investigator to continue collecting 
data until they observe their favored result, at which point they can promptly end the experiment, leading to results 
that are biased by the investigator's goals. Rather, the Classical thought goes, scientific objectivity requires that the 
experimental design be settled in advance, and that the investigators not be given discretion to end the experiment 
when it suits their intellectual or professional goals. But in order to rule that kind of perverse stopping rule out as 
epistemically illegitimate, it seems that we must adopt an approach (like the Classical one) on which the details of the 
relevant stopping rule can have an impact on the inferential significance of the observed data.
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4 | LIKELIHOOD VALUES VS. LIKELIHOOD RATIOS

Another core difference between the Bayesian and Classical approaches is that Classicalists care about likelihood 
values, whereas Bayesians care about likelihood ratios.

As explained in §3, on the Classical Approach, a p-value is calculated by summing the likelihood values for each 
possible outcome that is at least as unlikely as the actual outcome, on the supposition of the Null Hypothesis. As a 
consequence, any outcome with an even slightly higher likelihood, on the supposition of the Null Hypothesis, than 
the actual outcome is completely disregarded in calculating a p-value; it is irrelevant whether such an outcome's 
likelihood exceeds the likelihood of the actual outcome by a large factor (or difference) or a small one. Similarly, any 
outcome with a likelihood that is no higher, on the supposition of the Null Hypothesis, than the actual outcome, will 
simply contribute the value of its likelihood to the p-value.

By contrast, on the Bayesian approach, what matters is not the values of the various likelihoods per se, but rather 
their ratios. If an outcome that is extremely unlikely on the supposition of some particular hypothesis occurs, that 
alone is no reason for a Bayesian to lower their credence in that hypothesis at all; all that matters is how the likelihood 
of that outcome on the supposition of the hypothesis compares to the likelihood of that outcome on the supposition 
of competitor hypotheses. So, for example, if an outcome occurs that is just as unlikely on the supposition of any  of 
the hypotheses under consideration, then a Bayesian will reason that the outcome—however unlikely—does not 
distinguish between the hypotheses, and hence that it does not provide a reason to change their credences in the 
hypotheses.

One consequence of this difference is that, on the Classical Approach, it is possible to reject two (or more) differ-
ent hypotheses, even if it is known that one of those hypotheses is true. After all, an observed outcome might be 
extremely improbable on any of the hypotheses under consideration, in which case each hypothesis can be rejected 
at a statistically significant level. By contrast, since the Bayesian Approach focuses on likelihood ratios rather than 
values, an observed outcome that has a low likelihood on each of the relevant hypotheses doesn't necessarily consti-
tute a reason to rule out (or to assign low credence to) any of the relevant hypotheses; all that matters to a Bayesian 
is how much likelier the outcome was on the supposition of one hypothesis than it was on the supposition of its 
competitors. 13

5 | DESCRIBING THE DATA

A third point of difference between the Bayesian and Classical approaches to inference is the issue of how to describe 
the data on the basis of which a statistical inference is being made. Bayesians standardly embrace the Require-
ment of Total Evidence, according to which “to the extent that what it is reasonable to believe depends on one's 
evidence, what is relevant is the bearing of one's total evidence.” 14 The rough idea here is that, when we ignore 
some of the evidence that is in our possession, this can lead us epistemically astray. For example, someone would 
violate the Requirement of Total Evidence if they were to evaluate the dangerousness of a particular situation by 
attending only to their evidence that there is a bear nearby, ignoring the evidence they have that it is a friendly (and 
hence non-dangerous) bear. To be sure, the Requirement of Total Evidence sometimes directs us to take irrelevant 
evidence—say, the fact that a Bob Dylan song was playing on the radio when the instrument detected a particular 
photon—into account, but this is not epistemically problematic; as long as none of the hypotheses under considera-
tion assigns a different likelihood to Bob Dylan playing on the radio than any other hypothesis does, taking the extra 
evidence into consideration will yield the same results as ignoring it, just as we would expect for irrelevant evidence.

By contrast, there is an important sense in which Classical approaches to inference often depend on violations of 
the Requirement of Total Evidence. Consider, for instance, the toy example from §3. The calculation of the p-value 
in that case depended on individuating the outcomes in terms of the number of heads results (or, equivalently, in 
terms of the number of tails results), which could range from 0 to 20. On that individuation of outcomes, there are 
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some outcomes, such as A r = 10 , that have higher likelihoods on the supposition of the Null Hypothesis, and there are 
some  outcomes, such as A r = 0 and A r = 20 , that have lower likelihoods; as a result, it is possible to observe an outcome 
(such as A r = 20 ) that is associated with a p-value in the “statistically significant” range. However, if we had individu-
ated the possible outcomes more finely—say, in terms of the precise sequence of heads and tails flips, rather than in 
terms of the total number of heads (or tails) flips—then a statistically significant p-value is no longer possible. After 
all, on the supposition of the Null Hypothesis, every single sequence of heads and tails results has exactly the same 

likelihood: A
1

2

20 . Thus, on this individuation of outcomes, any possible outcome (including, for example, the all-heads 
outcome HHHHHHHHHHHHHHHHHHHH) is such that the likelihood, on the supposition of the Null Hypothesis, 
that an outcome as least as unlikely would occur is 1. And so, relative to this individuation of outcomes, a p-value of 
1 will be calculated, regardless of which sequence of heads and tails is actually observed; obviously, this corresponds 
to the absence of statistical significance at any level.

One Classical strategy for solving this problem is to insist that the test statistics that should be used in signifi-
cance tests are the “minimal-sufficient” statistics. 15 A statistic A t is sufficient relative to a particular Null Hypothesis iff, 
on the supposition that the Null Hypothesis is true, all of the more specific outcomes compatible with A t are equally 
likely. So, for example, the “number of heads” statistic is sufficient in our coin case, relative to the Null Hypothesis 

that the coin is fair; on the supposition that A H
0
 is true, each 1-head outcome is equally likely (i.e., A 20×

(

1

2

)

20

 ), and 
similarly for each other A n-heads outcome. However, the precise sequence of heads and tails is a sufficient statistic 
too; each value of that statistic is compatible with only one possible outcome, so sufficiency is trivially secured. A 
minimal-sufficient statistic, then, is a sufficient statistic such that any loss of information would destroy its sufficiency. 
The precise sequence of heads and tails is not minimal-sufficient, since the “number of heads” statistic contains less 
information and is still sufficient. The motivating idea behind this response is that, since a minimal-sufficient statistic 
partitions the outcome space into equivalence classes of outcomes that have equal likelihoods on the supposition of 
the Null Hypothesis, it contains all of the information that is really needed when we are trying to evaluate that Null 
Hypothesis.

One potential worry about this appeal to minimal-sufficiency is that, as noted above, the Requirement of Total 
Evidence mandates using the most informative statement of our evidence available, and minimal-sufficient statistics 
are (at least often) less than maximally informative, so there is a prima facie tension with the (independently plausi-
ble) Requirement of Total Evidence. Another worry is that, in the particular coin case we've been considering where 
the Null Hypothesis is that the coin is fair, the “number of heads” statistic is not minimal-sufficient either, since the 
“empty” statistic that contains no information at all (think of it as the “information” that there were 20 flips) is suffi-
cient too, as it partitions the outcome space into a single equivalence class containing A 2

20 precise sequences, each of 
which is equally likely on the supposition of the Null Hypothesis. 16 And, of course, when we use that “empty” statistic, 
we learn nothing at all; the likelihood, on the supposition of the Null Hypothesis, that the empty statistic would take 
the value it does is 1, and so statical significance at any level is impossible relative to this statistic. Finally, even in 
cases where the Null Hypothesis involves probabilities other than A

1

2
 , the strategy of appealing to minimal-sufficient 

statistics can have the effect of collapsing intuitively different outcomes into the same equivalence class, if the Null 
Hypothesis “just so happens” to assign them equal likelihoods. 17

6 | THE ELIMINABILITY OF SUBJECTIVITY

A fourth difference between the Bayesian Approach and the Classical Approach is implicit in the above, but it is worth 
making explicit: the “location” of subjectivity.

On the Bayesian approach, one large and important question is which constraints, if any, the agent's prior 
credence distribution is subject to. This issue divides so-called “subjective Bayesians” and “objective Bayesians”; 
roughly, the former camp thinks that any coherent 18 prior credence distribution that an agent might have is perfectly 
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rational, whereas the latter camp thinks that there are additional objective constraints on rational prior credence 
distributions that go beyond mere coherence. 19 But it has been notoriously difficult to formulate a version of objec-
tive Bayesianism that is precise about what the objective constraints on rational prior credence functions are, and in a 
lot of cases it is very difficult to imagine how, even if there are such constraints, they could uniquely settle the ration-
ally permissible prior credence distribution to have; for example, it is very hard to imagine what sorts of constraints 
could make it the case that the uniquely rational prior credence to have in (say) the General Theory of Relativity is 
(say) 0.28934218, rather than some other non-extreme value.

In light of this, most Bayesians look to be committed to the claim that it is possible for Scientist #1 and Scien-
tist #2 to come to the table with different prior opinions about some subject matter, to collect the same evidence, 
and to be fully justified in reacting differently to that evidence. 20 This sort of “subjectivity” in the Bayesian program 
has troubled some philosophers and statisticians, and has inclined them toward statistical methods that are not 
similarly dependent on subjective factors. However, while it is true that, since the Classical Approach does not rely 
on a prior credence distribution, it does not embed exactly the same subjective element as the Bayesian Approach 
does, it is not clear that the Classical Approach is any less subjective overall. For example, as discussed above, an 
evidence-gatherer's choice of stopping rule and an evidence-analyzer's choice of test statistic can have a substantial 
impact on the results of a Classical statistical analysis, and it is not ultimately clear that these subjective elements 
can (or should) be eliminated from the Classical Approach. Thus, while the Bayesian and Classical approaches may 
disagree about the location and role of subjective elements in statistical analysis, it is not clear that they ultimately 
disagree about whether subjective elements can or should be eliminated from that analysis entirely.
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ENDNOTES

  1 Technically, the agent's prior credence distribution is defined over an algebra (more specifically, a A σ-algebra) of hypotheses, 
which is formed by taking the closure of this set of hypotheses under the operations of (countable) union, (countable) 
intersection, and complement. In effect, the requirement that the agent's credences be defined over an algebra of basic 
outcomes guarantees that, whenever an agent has credences in those basic outcomes, the agent will also have credences 
in arbitrary conjunctions, disjunctions, and negations of those outcomes.

  2 This is intended only as an illustration of one intuition behind the Rule of Conditionalization, not as a fully developed 
argument for the Rule of Conditionalization. For arguments for the Rule of Conditionalization, see, e.g., Greaves and 
Wallace (2006), Lewis (1999), Pettigrew (2020), and Savage (1954).

  3 For a much more detailed (but very accessible) overview of Bayesian Confirmation Theory, see Strevens (2017).
  4 For a discussion of Neyman-Pearson tests, see Howson and Urbach (1993).
  5 For discussion see Cohen (1994).
  6 The level of A α in a particular context that is “statistically significant” varies depending on the nature of the data involved, 

the practical importance of the decision, and a variety of other factors, and there is undoubtedly some degree of arbitrari-
ness in setting a level for some particular decision, or some particular publication, at 0.05 rather than (say) 0.049 or 0.051. 
Note too that the value of A α does not directly speak to the probability of committing a Type II Error (i.e., the error of failing 
to reject the Null Hypothesis when it is actually false) in situations in which the Null Hypothesis is false; to address this, 
we must determine the value of a different parameter, A β .

  7 One reason that this is not the same as having a credence of 0.95 that the Null Hypothesis is false is that we haven't 
yet said anything about the “base rate” at which the Null Hypothesis is true in the world. Indeed, whereas the Bayes-
ian Approach explicitly takes this base rate into account in the prior probability distribution, the Classical Approach is 
designed to ignore the base rate and focus instead on p-values. For example, this morning, I saw a student who was on her 
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way to class catch a wayward frisbee with one hand while she was holding her cell phone in the other hand. Consider the 
Null Hypothesis that this student is not a professional frisbee player. On the assumption of that Null Hypothesis, the like-
lihood was fairly low that she would be able to catch an unexpected frisbee one-handed; let's suppose that the likelihood 
was 5%. Similarly, if 100 students who are not professional frisbee players were to find themselves in the same situation, 
only around 5% of them would catch the frisbee. But none of that commits me to having a credence of 0.95 that the 
particular student I saw is a professional frisbee player. After all, the vast majority of students are not professional frisbee 
players, and it is overwhelmingly likely that the student I saw was simply an ordinary student who made an impressive 
catch, not a professional frisbee player. So, my credence is not at all high, and nowhere close to 0.95, that that student is a 
professional frisbee player. And yet, on the assumption that she is not a professional frisbee player, the likelihood was only 
0.05 that she would make a catch that was (at least) that impressive. A somewhat less accurate, but more intuitive, way to 
make this point is to say: to reject a Null Hypothesis is to think that, if that Null Hypothesis is indeed true, then something 
pretty unusual happened. But there are circumstances in which it's perfectly reasonable to think that something pretty 
unusual (probably) happened—as when I think that I probably saw a student who is not a professional frisbee player make 
an improbably nice catch.

  8 This point about the appropriate description of the experimental outcome will be explored in more detail in §6 below. For 
now, it suffices to note that the only likelihoods that matter for a Bayesian are the likelihoods of A E itself—nothing stronger 
or weaker than A E , nothing with a different content than A E—on the various hypotheses under consideration.

  9 See, e.g., Howson and Urbach (1993, pp. 213–15), Savage (1962, p. 18), Whitehead (1993, pp. 1412–13), and 
Gillies (1990, p. 94).

  10 The number of 6-heads-n-tails outcomes is A
(5+n)!

n!5!
 , and the likelihood of a 6-heads-n-tails outcome on the supposition of A H

0
 

is A
(5+n)!

n!5!
(0.5)

6+n . For the actual value of A n = 14 , this likelihood is approximately 0.011. All and only outcomes with A n≥ 14 are 
at least as unlikely on the supposition of A H

0
 as the A n = 14 (i.e., the actual) outcome (the likelihood for A n = 0 is approximately 

0.016). The sum of all likelihoods for A n≥ 14 is approximately 0.032.
  11 For discussion see Rouder (2014).
  12 Of course, a difference in stopping rules could matter even for a Bayesian, if the choice of stopping rule impacts what 

outcome is actually observed. But the important point is that the stopping rule does not have an inferential impact per se; 
once we fix the priors, the outcome, and the likelihood of that outcome on the various hypotheses, the choice of stopping 
rule has no further inferential significance.

  13 This challenge for the Classical Approach is known as Lindley's Paradox; it was first raised by Harold Jeffries in 1939 and 
got its name from Dennis Lindley in 1957. It is discussed in Kyburg (1974) and Howson and Urbach (1993).

  14 Kelly (2008). For a discussion of how to implement the Requirement of Total Evidence, see Kotzen (2012).
  15 For a discussion of sufficiency and minimal-sufficiency, see Howson and Urbach (1993, pp. 189–92). For a defense of the 

minimal-sufficiency move, see Seidenfeld (1979).
  16 This would not be the case if the Null Hypothesis were that the coin has some particular bias—say, 0.6 in favor of heads—

since in that case not all of the more specific outcomes would be equiprobable on the assumption of the Null Hypothesis.

  17 For example, consider the Null Hypothesis that the heads-bias of a particular coin is A
6−

√

6

5
≈ 0.710 , and suppose that the 

coin is flipped four times. On that Null Hypothesis, the likelihood of a four-heads outcome is identical to the likelihood of 

a two-heads-two-tails outcome: A

(

6−

√

6

5

)

4

≈ 0.254 . Thus, on the strategy under consideration, the statistic that can take 
the values of 0-heads, 1-heads, 2-or-4 heads, or 3-heads is a sufficient statistic, and thus prevents the “number of heads” 
statistic from being minimal-sufficient.

  18 A “coherent” credence distribution is simply one that obeys the axioms of probability theory.
  19 For some defenses of subjective approaches, see, e.g., Jeffrey (1992), de Finnetti (1937), and de Finetti (1974). For some 

defenses of objective approaches, see, e.g., Jaynes (2003) and Rosenkrantz (1981).
  20 Bayesians often appeal to “washing out of the priors” results here to show that any effect of initial differences of opinion 

will vanish to zero as more evidence is collected. For discussion see Hawthorne (1994).
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